If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7q^2-19q=23
We move all terms to the left:
7q^2-19q-(23)=0
a = 7; b = -19; c = -23;
Δ = b2-4ac
Δ = -192-4·7·(-23)
Δ = 1005
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{1005}}{2*7}=\frac{19-\sqrt{1005}}{14} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{1005}}{2*7}=\frac{19+\sqrt{1005}}{14} $
| 6•2^x/4=222 | | (5x)+(x+12)+(x)=180 | | x+3=9.2 | | 2/3k-12=-20 | | 7x-16-15x=4 | | -13=-4b+3+8 | | 5+6x=143 | | 3x-9x+6=30-3x=4x | | 9x-9=x+21 | | X=44x+6= | | 3(4x+2)+2x=62 | | 9x=7=-20 | | 10x-5x-44-6+50=100 | | x/12+5=-1 | | B+2b+4b=56 | | 2x/16+124=180 | | 20y-11=4y+6 | | 4y+6+20y-11=360 | | 4.5x-9+15x=6x-8-1 | | 3x-2.25=4.5 | | x^2+2x=54000 | | 2n+5=3n+10 | | 49x2-4(Y+11)=3Y-2 | | 12*z=24- | | y=2/5*0-2 | | 7x-5=3x-13+2x | | (9x+40)=83 | | y=-6-2/2 | | 4t+3.5t=9 | | 6,5+r=1,48 | | (3y^2-6y+5)=(-4y^2+7y+2) | | y=12*0+6 |